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INTRODUCTION :
The utilization of the longwave channel (5 Hz to 300 kHz) for digital radio transmission has _;4,'
greatly increased during the past 20 years. Several large"VLF ground based transmitting aiicnnas have ’."-5"
beeu rebuilt, and new facilities have been constructed. The ELF band has been opened up for use. A %'._
Squadrons of longwave broadcasting aircraft have been procured and operated. A widespread use of : X
new modulation techniques and receivers has been verified. The importance of systems using the :;K\g'
jongwave band is not widely appreciated, but the statement by Donald C. Latham, Assistant Secretary NS
of Defense for Command, Control, Communication and Intelligence in the Appendix {1], is abundantly Tty
clear. It is impossible to present a comprehensive picture of the long wavelength situation today : # '_
without producing a book as large as A. D. Watt's monumental treatise [2]. However, because many Faal
students and readers are unfamiliar with the longwave area, we present a brief introductory discussion ;"“-'q
of the total longwave communications system including transmitting antennas and radio receivers ;;('
before discussing in detail the impact of propagation on system design and performance. b‘“*
."*1 .
ANTENNAS e
B b
. . . N
The longwave channel antennas are an important component of the overall propagation medium t" ,
because they provide a basic restriction on types of signals that can be launched. The longwave channe! & )
is charactlerized by the fact that efficient radiation from conventional size man-made structures is giffi- Rt
cult to achieve. Great ingenuity has been employed to produce adequately large antenna configurations 3
and to obtain the greatest possible efficiency from antenna systems that are necessarily small in com- DY
parison to a wavelength. Figure 1 shows the types of longwave antenna commonly used. e
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Many of the fixed/ground based vertical monopole antennas are of the ‘‘small antenna’’ variety
characterized by a very small radiation resistance (less than 1 2). Consequently, these antennas are
quite inefficient unless special precautions are taken to reduce atterly all unnecessary losses. One com-
mon technique is the construction of a large ground plane to suppress losses in the earth near the
antenna. A second feature is the deployment of an elaborate ‘‘top hat’’ consisting of cables connected
together and suspended from towers to provide additional antenna capacity to increase wirease the
antenna's ability to carry current for a given voltage. In this way the losses are reduced to a minimum
and a higher efficiency is achieved. However, a high ‘‘Q’’ antenna system with a consequent low
handwidth results from these procedures. The design considerations for such antennas are summarized
in Refs. 1 through 3. Figures 2 through S (3] show the four principal ground based antenna types: Tri-

atic, Goliath, Trideco, and valley span. Figures 6 through 1l illustrate the designs of U.S. Navy VLF
fixed ground-based antennas.

The suspension of a long conducting cable from an aircraft or other lifting vehicle is an alternative
method for making an efficient radiator at long wavelengths. Thus a half wave dipole antenna is
achieved with a large radiation resistance and high radiation efficiency without the high Q™" and lim-
ited bandwidth of the ground-based tower antennas. This technology is the basis of the TACAMO and
airborne command post longwave communication capability as presented in Refs. 5, 6. and 7. The air- &{

ul

borne facilities are illustrated in Fig. 12. [S].

An horizontal electric antenna can be used at fong waves. This antenna is utilized for the ELF

communication system [8,9]. In this system, a powerfui current is driven along horizontal wires that {'3
like nower incs are stretched over the earth’s surface and grounded at each end. When the conduc- g
tivity of the nnderlving earth is low, it is as if the antenna is suspended at a modest height above the

“elesiriva!” easth. The effective image currents flow from one terminal to the other at a depth propor- )

tional to the electromagnetic skin depth of the underlying material. This mechanism permits the !
horizontal antennas to operate with modest efficiency.

In the near future, it will be feasibie to deploy a large longwave antenna from an earth orbiting N
satellite. Italy and the United States (NASA) in a joint program are developing a 60 km conducting T

tether system for use in space. One of the applications of this tether is the generation of long radio _
waves [10]. -
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Fig. 5 — Natural valley-span antcnna
Fig. 6 — Old Lualualel antennd, pictorial view
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Fig 12 — Airborne submarine communications. (Figure 3 on p. 28. Vol. 39, No. 7, entiticd “Strategic

Command and Control and Nationa! Security,”” by Dr. Bruce G. Blair from Signal, published by The .\-;
Armed Forces Communications and Electronics Assoctation Copyright (¢) 19835, used by pernussion.) &

PROPAGATION

Summary

[

The first transatlantic radio propagation experiments of Marcon: were conducted in the long-
wavelength band [2]. In comparison to the short-wave band, the long-wavelength band is highly reli-
able. Long-distance propagation of a long radio wave relies on a reflection from the lower ionosphere
to bring the radio wave back to earth. On the other hand, short-waves are gradually bent back to earth )
because of a refraction process that depends on the detailed horizontal and vertical gradients of an -~
upper-ionosphere F-layer. A VLF wave spends most of its journey in the free space belween the

earth’s surface and the lower jonosphere. A shorl-wave propagates mostly through the ionosphere .‘:-
between 70 and 300 km height. between the D-luyer and the F-layer. This is probably the basic reason iy
that long-wavelength waves show greater stability of reception. The disadvantages of long waves
(which were deadly from an ordinary ¢conomic point of view) are: :
Ny
(1) Large antenna structure id
L
(b  Narrow bandwidths {*} i
-
(c)  Limited total spectrum )
,'\
() High powers required to overcome noise. L
4.- 1
. q
The advantages ol long waves are: .
[ !
(a}  Great propagation range (even to the antipodes) _ !
]
(b} High phase stability -~
:
{c)  Significant ability to pencirate earth and seawater P
1
1
8 I
!
i
]
i
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The long propagation range and phase stability for long wavelength waves make their use for navi-
gation feasible (Omega, Decca, and Loran). Their penetration into the earth makes the waves useful to
prospectors looking for ore-bodies or other deposits beneath the earth.

The Ionosphere and Reflection Coefficients

The layers ascribed to the ionosphere and atmosphere are illustrated in Fig. 13 [11]. The ionos-
pheric reflection coefficients are defined as the ratio of downcoming electric field to the upgoing ficld.
Because there are two orthogonal upgoing and downcoming field components, four complex reflection
coefficients characterize the process at any given angle of incidence. The matrix form is as follows:

E|‘|1 - llRII LRH EILII (1)
Ef iRy LRy| | EY

where
¥ is the upgoing electric field in the plane of incidence;

E}! is the upgoing electric field perpendicular to the plane of incidence

(i.e., the horizontal electric field):

E¢ is the downcoming electric field in the planc of incidence;

E{¢ is the downcoming electric field perpendicular to the plane of incidence.

( IONOSPHERE ! NEUTRAL ATMOSPHERE |
5000 ——---- , :
TEMPERATURE PROCESSES
PROTONOSPHERE
2000 2000
1000 EXOSPHERL 1000
’é HELIOSPHERE
x ---(500 - 700)-- -
C 500 500
I
©
W F2
T THERMOSPHE RE
200 OIFFUSOSPHERE | 2
\ I Fi
I'd
} { . TURBOPAUSE
190 ”:’ , ] (100 —120) 100
- o - -MESOPAUSE (85) | 1 omna nr
t / MESOSPHERE
50 ‘_,MESOPEAK(‘:)O)L 50

!
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Fig. 13 — Awmospheric fayers and nomenclature
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F. J. KELLY

The reflection coefficients are functions of the electron and ion density profiles of the ionosphere.
The collision frequency profiles, geomagnetic field and angle of incidence must also be specified.
Several full-wave techniques can be used to calculate the reflection coefficient matrix. It is beyond the
range of this lecture to describe these methods in depth. Figures 14 through 16 show sample calcula-
tions of reflection coefficients versus incidence angle at 3 kHz for a geomagnetic dip angle of 60°. (Ref.
12) Figure 17 shows iwo reflection coefficients as a function of frequency for fixed incidence angle of
approximately 30°. (Ref. 13) The ionospheric profile used for each calculation is shown in Fig. 18.
Notice that the calculated reflection coefficients above about 30 kHz are strongly varying with fre-
quency. They seem to reflect the detailed structure of the ionosphere. The smooth approximation by
Allcock and Belrose (Ref. 14) seems adequate for a first approximation; but it lacks the oscillations
noted in the fullwave results. During nighttime long radio waves are transmitted through the lower
ionosphere with small loss. Space-borne receivers can readily hear ground-based transmitters. Likewise
receivers on the ground can sense many curious electrical noises that are generated and stimulated in
the ionosphere and magnetosphere. For these ground-to-space and space-to-ground paths the lower
ionosphere transmission coefficient is significant in forming a signal power budget. This transmission
coefficient can be calculated using Pitteway's full wave method. (Ref. 15). Sample transmission coefTi-

cient results for a 3 kHz case are shown in Figs. 19 and 20.

Field Strength Calculations using Waveguide Modes

For long range propagation calculations it is customary [16] to treat the space between the earth
and the ionosphere as a waveguide and 1o calculate the field strengths from a transmitter as a summa-
tion of waveguide modes. A popular method for achieving this is by using the WAVEGUIDE com-

puter program.
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|

i b6
Description of WAVEGUIDE 5,}

The WAVEGUIDE computer program originally was developed at the Naval Electronics Labora-

tory Center to predict the vertical electric field received at a point on the earth’s surface and produced %ﬁi \
by a vertical electric transmitting antenna at another point on the earth's surface. Later it was extended g
to give the crosspolarized (horizontal) components of the field at any height in the earth-ionosphere

' waveguide and even in the ionosphere [17-19]. The basic formulation of the equations for the fields is !
given in Ref. 20. The net resultant vertical electric field at the earth’s surface is represented as 4 sum- 'l{gf

mation of waveguide-mode fields:

i o/ €o d/a , . , . A
E. 0) = ——e— g ———— 3 A 4 + jk; . Iy
L ( N lds ~ / anidia) E" sin¥2 9, A, exp (in/ ikgydsin 9,)) ) el

where i
PR
' 8, is the eigenangle of the nth waveguide mode, < )
lds is the dipole moment (ampere-meter) of the vertical antenna located on the earth's sur- :
face, N
A, 1s the excitation factor of the nth waveguide mode, ‘}’ ‘
a is the radius of the earth, -
d is the great-circle distance between the transmitler and the receiver, -
h is the reference height of the ionosphere (used in the definition of A ). t;
ko (= w/c) is the free-space propagation constant of the wave, 2o
d A is the wavelength of the wave,
4 and W 3
; wy and €, are the magnetic permeabitity and diclectric constant of free space. ‘;:. y
Each waveguide mode is characterized by its own value of attenuation rate a, and phase velocity K
v,. which are related to the eigenangle ot the nth waveguide mode #, according to ’i )
a, = 0.02895 w Im (sin 6,) (3) T
[ 1
; and LY
H .\' .’
4 - (4) ~ 3
vV, = ——————
P Re(sing,) 2
where a, is measured in decibels per 1000 km (dB/Mm) and ¢ is the speed of light. :?, 5
LN {
The values of the waveguide-mode cigenangles depend on the reflection coefficients of the ' '
ground and the ionosphere. Because of its anisotropy. the ionosphere has four reflection coefficients ‘.- y
-Ry(0,), R (6,), R (#,), and R.(#4,) for a given anglc of incidence #,. The ground is assumed to A
be isotropic and to have reflectian coefficients ~R.(4,) and [ R, (8,). that are calculable from the 8
! eigenangle, ground conductivity, and diclectric constant. The WAVEGUIDE progrum uses a procedure T
for calculating the ground and ionospheric reflection coefficients referenced 10 any height z in the f:ﬂ
waveguide. Rcferences 26. 27, and 28 discuss the reflection coefflicients further. The cigenangle 4, for :
a given waveguide maode is obtained by satisfying the mode equation PN
P
- Dy
R0 LR LR o 1ol et
= — - |
O=10 R0, R (8 0o Rawpl o ) (5) L
This matnix eqation is simply rewritlen '
. = = = = r
F,) = (R, R,-1) (R R -1)-,R. R.R R, =0, (6) o
where the dependence of the reflection coefficient on 8, has been suppressed to simplify the notation. . Iy
The new variable £(4,) is dlso defined. Each value of ¢, whicn satisfies Eq. (6) is the eigenangle of "o
the nth waveguide mode. The excitation factor A, for the nth waveguide mode is obtained from o
14
-
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. 1 +,R) (- R,R
l A,,-~l'ﬂsin 0, ( I u) ( LRy 1) . (7
2 R 3F(6)
(K] ao 9-0‘

~ where the variable F(8) is as defined in Eq. (6). In addition to the vertical electric field E, for a given
waveguide mode having eigenangle 8,, in general, there exist five other nonzero field components E,,
E,, H,, H,, and H, within the waveguide for each mode.

These extra fields arise because the ionosphere is anisotropic because of the earth’s magnetic
field. Propagation through and reflection from such an anisotropic medium rotates the plane of polari-
zation of the incident wave to generate crosspolarized reflected fields. Alternatively one could consider
the linearly polarized wave transmitted from the vertical electric dipole antenna to be a linear superposi-
tion of right-handed and left-handed circularly polarized waves, each reflected with a different ampli-
tude at the ionosphere. The ionospheric reflection causes a mixture of’ wave polarizations at a reception
point on or above the earth’s surface. The fields at height z are related to the vertical electric fields at
the earth’s surface E,(0) in a given waveguide mode by the following functions of reflection coeffi-
cients and Hankel functions:

=4

B e -~

L

E,(2)/E,(0) = 1, (2), (8)
E, (2)/E.(0) = g(2)/§. 9)

WR (14, R)) £, (2)

E (2)/E,(0) = = — . (10)
S+ ,R) (1 - R R)
R, (1 4+ R) )
H(E 0 = - — R RIAE an
n(l +"R||) (l _lRLLRL)
Su(2)
H,(2)/E,(0) = — (12)
and
R+, R) df, (2
H,(2)/E,(0) = - UriR) /i { ). (13
ink S+ ,R) (1 - R R dz
where
2—D F, h(q) + Fy hy(q)
" = . 4
Su(2) = exp ] Fh (e ¥ Fyhola)) (14)
Fy h(q) + Fy hy(q)
fl (2) = F3 h,(qd) + F4 hz(qd) ’ (s
and

...
oo
LA

gl2) =~ L (1 1), (16)
dz

L
ik

15




I'es

F.J. KELLY =
~_in which o
nd k 1/3 o
F =- [H,(qo) -i—= [“—l (N2 - s\ hz(qo)]. an :
NR 2 -~
a
"2 X /3
Fy=Hygo) ~ i —= | 5] (N2 = S92 hy(qy). (18)
N2 2 g
" /3
Fy=— [h'z(qo) - ‘GT (N} - sHV? h;(qo)]. (19) %
. 13
Fo=h(qe) — i l%—l (N2 — SHY2 hy(q0), (20) o
be:d
-23
2 2 !
=|— Cl— =(n - 2}, 2D
q ak a( : l e
and
2 2 gé
. 1_ L - D). (22) '
qy ak C a (h l
\
with &5
2 | 2}
== 2 =2 23
o lakl |C al’ (23 =
=]
L2 23 i
ES : —_—] — j = 4
H, (q) = (@) + 3 akl h(g). j=12, (24) :j
=1 %(h—z). (25) g R
w "
1 _ 2 N
ng =1 » h, (26) o
and g
A
.-‘\'KI =cleg— J <z 27) i 'E
[OX3 s
&
In Equation 27 « and € refer to the conductivity and dielectric constant of the earth. Q'.: g
Typical Waveguide Mode Parameters -
l.h:
Using the WAVEGUIDE program, one can calculate the propagation parameters of the various &

modes. Figures 21 through 23 [21] give the excitation factors and allenuation rates for the three lowest
order waveguide modes in the ELF band and lower VLF band. Figures 24 through 26 show the
behavior of the magnetic fields vs height in the waveguide and inside the lower ionosphere. The night-
time ionosphere as shown in Fig. 18 was used. The direction of propagation is toward magnelic north

]
A RSN I I

for a dip angle of 60°. Using these propagation parameters and Egs. (7-27), onc can estimate the hield ., (-\
strength produced by a (ransmitter. Additional equations and sample parameters for this task are given A
in Ref. 16. S
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Fig. 21 — Lowest order TEM mode propagation
paramelers vs frequency
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Fig. 23 — First-order TE mode propagation paramelers vs. frequency
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Figures 27 through 35 give propagation parameters for the first three waveguide modes calculated
for a typical daytime isotropic ionosphere and used in the noise prediction computer program described
in Ref. 22. These are similar to but more comprehensive than the parameters given in Ref. 23.

Field Strength Calculations and Measurements

As shown in Ref. 24, field strength vs distance curves are calculated from these parameters. Fig-
ures 36 through 41 [25] illustrate the pattern of field strength vs distance for 1| kW radiated power
transmitter propagating over sea water at 24.0 kHz. The very sharp predicted interference hull at 2.4
Mm is noted in Fig. 36. Using the parameters given in Ref. 23, a statistical prediction of field strength
vs distance was made by a Monte Carlo technique. A Gaussian distribution of height 4 and conduc-
tivity gradient 8 was assumed to have an average h = 70 km and average 8 = .5 km~!. The standard
deviation of 4 was 1 km and of 8 was .05 km™'. This method predicted the greatest variability of signal
level to occur near the interference nulils at 2.4 and 3.8 Mm. Experimental data were taken for a period
during summer 1970 near the 2.4 Mm null produced by the NBA, Balboa transmitter that was operating
on 24.0 kHz (26]. The measured standard deviation was much smaller than that predicted from the
model. 1t was also smaller than that observed with long-term data-taking. From this data, it was con-
cluded that during the short period of this experiment the ionosphere was highly repeatable, even
though it showed greater variability over longer durations.

DCA Recammended lonuspheres

From an analysis of fieid strength vs distance data similar 10 those shown in Figs. 42 and 43, the
U.S. Defense Communications Agency [27) recommended the ionosphere profiles shown in Table 1.
Graphs showing these ionosphere parameters are shown in Figs. 44 and 45, [27). The electron density
N(z) vs height z in kilometers for a particular 8 and A is given by Eq. (28).

el

N(z) =11.43- 107—-—3 ~exp (—0.15 h.‘l {cxp {(B—-015)(z - m]t. (28)
cm

Table 1 — DCA {27] Recommended Profiles to Use in WAVEGUIDE
OR WAVEHOP Propagation Programs

DAYTIME NIGHTTIME
‘Summer Winter Summer Winter
High Latitude | 8 =03 A'=72 [ B=03,h' =172
Low Latitude | B=05hA" =70 | B =03 4" =72

B=05 | h =287

The collision frequency vs height is given by Eq. (29).
v (z) =y, exp (~a2) (29)

where

v, = 1.82x 19 collision/s a = 0.15km™!

From an analysis of multifrequency midlatitude day and nighttime data [28] that was conducted later
during flights from Hawaii to California, recommendations were derived which are given in Table 2. It
is significant that for nighttime the laterally .homogeneous ionospheric profiie must be assumed to
changes with broadcast frequency. This unphysical situation reflects our current lack of understanding
of the nighttime lower ionosphere.




